
Fast Paxos

Leslie Lamport

14 July 2005

Revised 18 January 2006

Minor revision 14 April 2006

MSR-TR-2005-112

To appear in Distributed Computing.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

Abstract

As used in practice, traditional consensus algorithms require three
message delays before any process can learn the chosen value. Fast
Paxos is an extension of the classic Paxos algorithm that allows the
value to be learned in two message delays. How and why the algo-
rithm works are explained informally, and a TLA+ specification of the
algorithm appears as an appendix.

Contents

1 Introduction 1

2 The Classic Paxos Algorithm 2
2.1 The Problem . 2
2.2 Safety . 4

2.2.1 The Basic Algorithm 4
2.2.2 Picking a Value in Phase 2a 6

2.3 Progress . 9
2.3.1 The Progress Property 9
2.3.2 The Complete Algorithm 11
2.3.3 Proof of Progress . 11

2.4 Implementation Considerations 13
2.4.1 Reducing the Number of Messages 13
2.4.2 The Cost of Classic Paxos 14

3 Making Paxos Fast 16
3.1 The Basic Algorithm . 16
3.2 Collision Recovery . 19
3.3 Progress . 21
3.4 Implementation Considerations 23

3.4.1 Choosing Quorums . 23
3.4.2 Avoiding Collisions in Uncoordinated Recovery 23
3.4.3 The Cost of Fast Paxos 24

4 Conclusion 26

Acknowledgment 27

References 27

Appendix The Formal Specification 29

1 Introduction

The consensus problem requires a set of processes to choose a single value.
This paper considers the consensus problem in an asynchronous message-
passing system subject to non-Byzantine faults. A solution to this problem
must never allow two different values to be chosen despite any number of
failures, and it must eventually choose a value if enough processes are non-
faulty and can communicate with one another.

In the traditional statement of the consensus problem, each process pro-
poses a value and the chosen value must be one of those proposed values.
It is not hard to see that any solution requires at least two message delays
before any process learns what value has been chosen [3]. A number of algo-
rithms achieve this delay in the best case. The classic Paxos algorithm [7, 9]
is popular because it achieves the optimal delay in the normal case when
used in practical systems [12].

The apparently optimal number of message delays required by tradi-
tional consensus algorithms is illusory—an artifact of the traditional prob-
lem statement in which values are chosen by the same processes that propose
them. In many applications, values are not proposed by the same processes
that choose the value. For example, in a client/server system, the clients
propose the next command to be executed and the servers choose one pro-
posed command. When a traditional consensus algorithm is used in such a
system, three message delays are required between when a client proposes a
command and when some process learns which command has been chosen.

A fast consensus algorithm is one in which a process can learn the chosen
value within two message delays of when it is proposed, even if values are
proposed and chosen by different sets of processes. It has been shown that
no general consensus algorithm can guarantee learning within two message
delays if competing proposals collide—that is, if two different values are
proposed concurrently [11]. A fast consensus algorithm therefore cannot
always be fast in the event of collision.

Fast Paxos is a fast consensus algorithm that is a variant of classic Paxos.
In the normal case, learning occurs in two message delays when there is no
collision and can be guaranteed to occur in three message delays even with
a collision. Moreover, it can achieve any desired degree of fault tolerance
using the smallest possible number of processes.

The basic idea behind Fast Paxos also underlies an earlier algorithm of
Brasileiro et al. [1]. However, they considered only the traditional consen-
sus problem, so they failed to realize that their algorithm could be easily
modified to obtain fast consensus. Pedone and Schiper’s R-Consensus Algo-

1

rithm [15] can also be modified to yield a fast consensus algorithm. However,
the resulting algorithm requires at least four message delays in the presence
of collision. (They also solve a more general problem with a similar algorithm
that, in the special case of consensus, also requires at least four message de-
lays when a collision occurs [14].) Zielinski [16] recently presented a fast
consensus algorithm that can be viewd as a variant of Fast Paxos.

Fast Paxos is at heart a simple extension of classic Paxos. It is easy
to understand why Fast Paxos works if one understands why classic Paxos
works. I therefore begin in Section 2 by explaining classic Paxos. Section 3
then explains how to modify classic Paxos to obtain Fast Paxos. The expo-
sition in these sections is somewhat informal. Their goal is to explain why
the algorithms work; they do not provide the customary concise descriptions
of the algorithms in pseudocode or any other language. Precise statements
of the classic Paxos algorithm can be found elsewhere [4, 7], and a formal
TLA+ [10] specification of Fast Paxos is given in the appendix. The TLA+

specification is general enough to encompass all the variants discussed here.
However, no single statement of Fast Paxos adequately describes the details
involved in implementing all these variants. A thorough understanding of
the principles underlying Fast Paxos is better preparation for implementing
it than any description of the algorithm, be it in pseudocode or a formal
language.

A concluding section discusses the optimality of Fast Paxos, explains the
relation between the algorithm of Brasileiro et al. and Fast Paxos, and briefly
mentions the generalization of classic and Fast Paxos to handle Byzantine
failures.

2 The Classic Paxos Algorithm

2.1 The Problem

The consensus problem is most usefully expressed in terms of three sets of
agents: proposers that can propose values, acceptors that choose a single
value, and learners that learn what value has been chosen. An agent rep-
resents a role played by some process; a single process can play multiple
roles. For example, in a client/server system, a client might play the roles
of proposer and learner, and a server might play the roles of acceptor and
learner.

I assume the customary asynchronous, distributed, non-Byzantine model
of computation in which:

2

• Agents operate at arbitrary speed, may fail by stopping, and may
restart. However, an agent may not perform an incorrect action.

• Agents communicate by sending messages that can take arbitrarily
long to be delivered, can be delivered out of order, can be duplicated,
and can be lost. However, messages are never (undetectably) cor-
rupted.

The safety requirements for consensus are as follows, where a value can be
proposed only by a proposer.

Nontriviality Only proposed values can be learned.

Consistency At most one value can be learned.

Most consensus algorithms, including Fast Paxos, trivially satisfy the non-
triviality requirement. I will therefore largely ignore nontriviality. Con-
sistency is satisfied by ensuring that only a single value is chosen by the
acceptors, and that only a value they choose can be learned. Ensuring that
only one value can be chosen is the hard part; it will be obvious how a
chosen value should be learned. So, I will concentrate on how the acceptors
choose a value.

The safety requirements must be maintained in the face of any number
of (non-Byzantine) failures. A consensus algorithm should also satisfy a
progress requirement stating approximately that a value is eventually cho-
sen if enough agents are nonfaulty. We do not want to rely on proposers
or learners for progress, because they could be unreliable. For example, we
don’t want a client/server system to halt just because a client fails to re-
spond; and a client might play the role of proposer and/or learner. Progress
should require only that enough acceptors are nonfaulty, as long as there
is a nonfaulty proposer to propose a value and a nonfaulty learner to learn
one. However, such a requirement is problematic because the classic Fis-
cher, Lynch, Paterson result [5] implies that it cannot be satisfied by any
fault-tolerant asynchronous algorithm that satisfies the safety properties of
consensus. Therefore, some additional hypothesis is required. Different con-
sensus algorithms use different hypotheses. I will defer a precise statement
of the Paxos algorithm’s progress property, which involves defining what
“nonfaulty” means, until I have described how it satisfies the safety prop-
erties. This is possible because the safety requirements must hold without
any nonfaultiness assumptions.

Progress must be possible if all the agents are nonfaulty, even if they
have all failed and been restarted. Since a value could have been learned

3

before the agents failed, agents must have some stable storage that survives
failure and restart. I assume that an agent restores its state from stable
storage when it restarts, so the failure of an agent is indistinguishable from
its simply pausing. There is thus no need to model failures explicitly.

2.2 Safety

2.2.1 The Basic Algorithm

I begin by describing a simple version of the Paxos consensus algorithm that
satisfies the safety requirements of consensus. It is extended in Section 2.3
to the complete algorithm that also satisfies a progress property.

The algorithm executes multiple rounds, where each round is numbered
by a positive integer. Rounds are not necessarily executed in numerical
order, individual rounds need not be completed and may be skipped alto-
gether, and different rounds may be executed concurrently. A round may
choose a value. A value is defined to be chosen iff it is chosen in some round.
In each round, an acceptor may vote to accept some single value or it may
decide not to vote. A value v is defined to be chosen in a round iff a majority
of the acceptors vote in that round to accept v . For simplicity, I describe an
algorithm that never terminates but continues to execute rounds even after
a value has been chosen. Termination and other optimizations are discussed
in Section 2.4 below.

Achieving consistency requires that two different values not be chosen.
Since an acceptor votes to accept at most one value in any round and any
two majorities contain an acceptor in common, it is impossible for two dif-
ferent values to be chosen in the same round. However, an acceptor can
vote to accept different values in different rounds. The hard part of achiev-
ing consistency is ensuring that different values are not chosen in different
rounds.

Although we reason about the algorithm in terms of all the votes that
an acceptor has ever cast, the acceptor does not have to remember those
votes. An acceptor a maintains only the following data:

rnd [a] The highest-numbered round in which a has participated, ini-
tially 0. (Since 0 is not a round number, rnd [a] = 0 means that
a has not participated in any round.)

vrnd [a] The highest-numbered round in which a has cast a vote, ini-
tially 0. (Hence, vrnd [a] ≤ rnd [a] is always true.)

4

vval [a] The value a voted to accept in round vrnd [a]; its initial value
(when vrnd [a] = 0) is irrelevant.

Paxos assumes a set of coordinator agents. The roles of coordinator and
acceptor are usually played by the same processes. For each round i , some
coordinator is pre-assigned to be the coordinator of round i . Moreover, each
coordinator is assigned to be the coordinator for infinitely many rounds.
Proposers send their proposals to the coordinators. As explained below,
the coordinator for round i picks a value that it tries to get chosen in that
round. Each coordinator c maintains the following data:

crnd [c] The highest-numbered round that c has begun, initially 0.

cval [c] The value that c has picked for round crnd [c], or the special
value none if c has not yet picked a value for that round. Its
initial value is irrelevant.

Round i progresses in the following phases, where c is the round’s coordi-
nator.

1. (a) If crnd [c] < i , then c starts round i by setting crnd [c] to i ,
setting cval [c] to none, and sending a message to each acceptor
a requesting that a participate in round i .

(b) If an acceptor a receives a request to participate in round i and
i > rnd [a], then a sets rnd [a] to i and sends coordinator c a
message containing the round number i and the current values of
vrnd [a] and vval [a].
If i ≤ rnd [a] (so a has begun round i or a higher-numbered
round), then a ignores the request.

2. (a) If crnd [c] = i (so c has not begun a higher-numbered round),
cval [c] = none (so c has not yet performed phase 2a for this
round), and c has received phase 1b messages for round i from a
majority of the acceptors; then by a rule described below, c uses
the contents of those messages to pick a value v , sets cval [c] to v ,
and sends a message to the acceptors requesting that they vote
in round i to accept v .

(b) If an acceptor a receives a request to vote in round i to accept a
value v , and i ≥ rnd [a] and vrnd [a] 6= i ; then a votes in round
i to accept v , sets vrnd [a] and rnd [a] to i , sets vval [a] to v , and
sends a message to all learners announcing its round i vote.

5

If i < rnd [a] or vrnd [a] = i (so a has begun a higher-numbered
round or already voted in this round), then a ignores the request.

A learner learns a value v if, for some round i , it receives phase 2b messages
from a majority of acceptors announcing that they have all voted for v in
round i .

A coordinator can execute a phase 1a action for a new round number at
any time. However, the enabling condition for that action prevents a coor-
dinator from starting a round with a lower number than one it has already
started. Different rounds can be executed concurrently, but an acceptor will
stop participating in a round if it receives (and acts on) a message for a
higher-numbered round. Phase 2a messages requesting acceptance of differ-
ent values can be sent in different rounds. However, the enabling condition
for the phase 2a action and the unique assignment of rounds to coordinators
ensure that phase 2a messages with different values cannot be sent for the
same round.

2.2.2 Picking a Value in Phase 2a

I have not yet described the heart of the algorithm—namely, how the coor-
dinator picks the value v in phase 2a. How it does this is derived from the
requirement that the algorithm maintain the following fundamental prop-
erty:

CP. For any rounds i and j with j < i , if a value v has been chosen or
might yet be chosen in round j , then no acceptor can vote for any
value except v in round i .

Of course, an equivalent statement of CP is:

For any rounds i and j with j < i , if an acceptor has voted for v in
round i , then no value other than v has been or might yet be chosen in
round j .

A value can be chosen in round i only if some acceptor votes for it. Therefore,
CP implies that if j < i , then no value other than v can ever be chosen
in round i if v is chosen in round j . CP thus implies that two different
values cannot be chosen in two different rounds. We have already seen that
two different values cannot be chosen in the same round, so CP implies
consistency.

Since CP implies the consistency requirement, we can guarantee that
the algorithm satisfies consistency by ensuring that it maintains CP. The

6

only value v that an acceptor can vote for in round i is the one picked by
the coordinator in phase 2a. So, we just need to ensure that v satisfies the
following property:

CP(v , i): For any round j < i , no value other than v has been or might
yet be chosen in round j .

Let a majority set be a set consisting of a majority of the acceptors. A value
v has been or might be chosen in round j iff there is some majority set Q
such that every acceptor in Q has either voted in round j for v or might yet
do so. An acceptor a never decreases rnd [a], and it ignores requests to vote
in round j if j < rnd [a]. Therefore, we have:

Observation 1. A value v has been or might be chosen in round j only
if there is a majority set Q such that each acceptor a in Q has rnd [a] ≤ j
or has voted for v in round j .

Observation 1 is false if “only if” is replaced with “iff” because rnd [a] = j
could be true if acceptor a has voted for some value other than v in round
j . We can replace “only if” with “iff” if we also replace rnd [a] ≤ j with

(rnd [a] ≤ j) ∧ (vrnd [a] < j)

but we won’t need this more complicated condition.
Since any two majority sets have an acceptor in common, Observation 1

easily implies the following two observations:

Observation 2. If there is a majority set Q such that every acceptor
a in Q has rnd [a] > j and has not voted in round j , then no value has
been or ever might be chosen in round j .

Observation 3. If there is a majority set Q and a value v such that
every acceptor a in Q has rnd [a] > j and has either voted for v in round
j or has not voted in round j , then no value other than v has been or
ever might be chosen in round j .

The hypotheses of Observation 3 do not imply that v has been or could
be chosen in round j . In fact, those hypotheses could be satisfied by two
different values v , in which case Observation 3 implies that no value has
been or ever might be chosen in round j .

Suppose the coordinator has received round i phase 1b messages from a
majority Q of acceptors. Since an acceptor a sets rnd [a] to i upon sending
a round i phase 1b message and it never decreases rnd [a], the current value

7

of rnd [a] satisfies rnd [a] ≥ i for all a in Q . Let vr(a) and vv(a) be the
values of vrnd [a] and vval [a], respectively, reported by acceptor a’s round
i phase 1b message, for a in Q . Let k be the largest value of vr(a) for all
acceptors a in Q . We now consider separately the two possible cases:

K1. k = 0

K2. k > 0

In case K1, every acceptor a in Q reported vrnd [a] = 0, so no acceptor in Q
has voted in any round j < i . Since rnd [a] ≥ i for all a in Q , Observation
2 implies that no value has been or ever might be chosen in any round
j < i . Hence, in this case CP(v , i) is satisfied regardless of what value v the
coordinator picks. However, to preserve nontriviality, the coordinator must
pick a value v that has been proposed.

In case K2, one or more acceptors reported having voted in round k and
no acceptor reported having voted in any round j > k . Let a0 be some
acceptor in Q with vr(a0) = k . In phase 2a, the coordinator picks v to
equal vv(a0). To show that this v satisfies CP(v , i), we must show that for
any round j with j < i , no value other than v has been or might yet be
chosen in round j . Because vrnd [a] ≤ rnd [a] and acceptor a responds to
a round i message only if i > rnd [a], we must have k < i . The proof can
therefore be split into the following three cases.

• k < j < i . Let a be any acceptor in Q . Because vr(a) is the largest
round number in which a had cast a vote when it sent that message
and vr(a) ≤ k < j , acceptor a had at that time not voted in round
j . Since it set rnd [a] to i upon sending the message, a could not
subsequently have cast a vote in any round numbered less than i .
Hence, a has not voted in round j . Therefore, no acceptor in Q has
voted in round j . Since rnd [a] ≥ i > j for all a in Q , Observation 2
implies that no value has been or might yet be chosen in round j .

• j = k . Acceptor a0 set vrnd [a0] to k > 0 and vval [a0] to v when it
voted for v in round k . Since an acceptor can vote in a round only for
the value sent it by the coordinator of that round, every acceptor has
either voted for v or not voted in round k . Since rnd [a] ≥ i > k for
all a in Q , Observation 3 implies that no value other than v has been
or might yet be chosen in round j .

• j < k . We can assume by induction that property CP held when
acceptor a0 voted for v in round k . This implies that no value other
than v has been or might yet be chosen in round j .

8

let Q be any majority set of acceptors that have sent round i phase 1b
messages.

vr(a) and vv(a) be the values of vrnd [a] and vval [a], respectively,
reported by acceptor a’s phase 1b message, for a in Q .

k be the largest value of vr(a) for all a in Q .

V be the set of values vv(a) for all a in Q with vr(a) = k .

if k = 0 then choose v to be any proposed value.
else V contains a single element; choose v to be that element.

Figure 1: The coordinator’s rule for picking value v in phase 2a of round i.

This completes the informal proof that CP(v , i) is satisfied with v = vv(a0).
A more rigorous proof, based on invariance, can be found in [7].

The rule for picking the value v in phase 2a is restated in Figure 1 in
a somewhat different form that is more useful for developing Fast Paxos.
Observe that the rule allows the coordinator to pick a v if it has received
phase 1b messages from a majority set and it has received a proposal message
from a proposer.

2.3 Progress

The simple algorithm of Section 2.2 satisfies property CP, and hence sat-
isfies the consistency requirement. It obviously satisfies the nontriviality
requirement. I now extend it to the complete algorithm that also satisfies
progress.

2.3.1 The Progress Property

Paxos gets around the Fischer, Lynch, Paterson impossibility result by as-
suming an algorithm for selecting a single coordinator to be the leader. Of
course, selecting a single leader is a form of consensus. However, Paxos re-
quires a single leader only for achieving progress. Safety is preserved even if
the leader-selection algorithm fails and the agents differ on what coordinator
they believe to be the leader. In practice, it is usually not hard to implement
a leader-selection algorithm that succeeds most of the time, which is good
enough since nothing bad happens if the algorithm fails. I will not discuss
how a leader is selected.

9

An agent is defined to be nonfaulty iff it eventually performs the actions
that it should, such as responding to messages. Define a set G of agents
to be good iff all the agents in G are nonfaulty and, if any one agent in G
repeatedly sends a message to any other agent in G , then that message is
eventually received—more precisely, the message is eventually delivered or
G is eventually not considered to be good. Being nonfaulty and being good
are temporal properties that depend on future behavior.

By definition, any subset of a good set is also a good set. The union of
two good sets need not be good if the communication network is partitioned,
or if network connectivity is not transitively closed, so agents p and q may
be unable to communicate with each other even though another agent r can
communicate with both of them. If the network crashes completely, there
will be no good sets containing more than a single agent.

For any proposer p, learner l , coordinator c, and set Q of acceptors,
define LA(p, l , c,Q) to be the condition that asserts:

LA1. {p, l , c} ∪Q is a good set.

LA2. p has proposed a value.

LA3. c is the one and only coordinator that believes itself to be the
leader.

The Paxos consensus algorithm satisfies the following property.

Progress For any learner l , if there ever exists proposer p, coordinator
c, and majority set Q such that LA(p, l , c,Q) holds from that
time on, then eventually l learns a value.

This property asserts that l eventually learns a value if LA(p, l , c,Q) holds
forever, for suitable p, c, and Q . More useful would be a real-time prop-
erty asserting that l learns a value within some specific length of time if
LA(p, l , c,Q) holds for that length of time. By assuming a time bound on
how long it takes a message sent by any agent in a good set to be received and
processed by another agent in that good set, it is straightforward to convert
a proof of the progress property to a proof of such a real-time property.

Faulty agents may perform actions (though the assumption of non-
Byzantine faults implies that they cannot perform incorrect actions). There-
fore, progress requires that LA3 hold even for faulty agents. The state of a
failed agent that never performs any further actions is obviously immaterial.

10

2.3.2 The Complete Algorithm

I now extend the algorithm described above so it satisfies the progress prop-
erty. First, the actions of the coordinator and the acceptors are modified as
follows:

CA1. If an acceptor a receives a phase 1a or 2a message for a round i
with i < rnd [a] and the coordinator of round rnd [a] is not the
coordinator of round i , then a sends the coordinator of round
i a special message indicating that round rnd [a] was begun. [If
i < rnd [a] and rounds i and rnd [a] have the same coordinator, then the
round i message is obsolete and is ignored.]

CA2. A coordinator c performs an action only if it believes itself to be
the current leader. It begins a new round i only if either crnd [c] =
0 or it has learned that a round j has been started, for some j with
crnd [c] < j < i .

Since any message can be lost, agents may have to retransmit messages to
ensure they are eventually delivered. I modify the algorithm with:

CA3. Each acceptor keeps resending the last phase 1b or 2b message it
sent; any coordinator that believes itself to be the leader keeps
resending to each acceptor the last phase 1a or 2a message that it
sent; and each proposer that has proposed a value keeps resending
that proposal to each coordinator.

CA3 requires agents to send an infinite sequence of messages. Section 2.4
explains how this unending retransmission of messages can be halted.

The actions described thus far state what actions an agent should try to
perform. We cannot expect a failed agent to succeed in doing anything. All
we can expect is:

CA4. A nonfaulty agent eventually performs any action that it should.

For example, CA3 and CA4 imply that while an acceptor a is nonfaulty, it
must eventually resend the last phase 1b or 2b message it sent. CA4 does
not forbid faulty agents from performing actions.

2.3.3 Proof of Progress

I now sketch the proof that the complete Paxos algorithm satisfies the
progress property of Section 2.3.1. I assume that LA(p, l , c,Q) holds from

11

some time T 0 on, for proposer p, learner l , coordinator c, and majority set
Q , and I show that l eventually learns a value. Let LA1–LA3 be the three
conditions of LA(p, l , c,Q).

1. From time T 0 on, no coordinator other than c executes any more actions.
Proof: By LA3 and CA2.

2. By some time T 1 ≥ T 0, there is a round number i such that from T 1

on, crnd [c] = i .
Proof: By LA1, LA3, and CA4, c eventually starts executing a round.
By step 1, no other coordinator starts a new round after T 0. Since only
a finite number of rounds have been started by time T 0, eventually c will
no longer learn of rounds with numbers greater than crnd [c] and by CA2
will start no new round.

3. From T 1 on, rnd [a] ≤ i for all acceptors a in Q .
Proof: I assume rnd [a] > i after T 1, for some a in Q , and obtain
a contradiction. By step 2, LA1, LA3, and CA3, c sends an infinite
sequence of round i messages to a. By LA1, CA1, and CA4, a sends an
infinite number of messages to c informing it of round numbers greater
than i . By LA1, LA3, and CA4, one of these messages is eventually
received by c and causes it to start a round numbered greater than i ,
contradicting step 2.

4. By some time T 2 ≥ T 1, coordinator c will have started phase 2 of
round i .
Proof: Step 2 implies c has begun round i by time T 1. I assume it
never starts phase 2 of round i and obtain a contradiction. By this
assumption, step 2, LA1, LA3, and CA3, c must keep resending phase 1a
messages. By LA1 and CA4, every acceptor in Q eventually receives this
phase 1a message and, by step 3, responds (or has already responded)
with a phase 1b message. By LA1, CA3, and step 1, the acceptors in Q
keep resending those phase 1b messages and c eventually receives them.
By LA1, LA2, and CA3, proposer p keeps sending a proposal message
to c and c eventually receives it. When c has received the proposal and
the phase 1b messages from the majority set Q , LA3 implies that its
phase 2a action is enabled, so LA1 and CA4 imply that c performs this
action, beginning phase 2 of round i . This is the required contradiction.

5. Eventually l learns a value.

12

Proof: By step 4, LA1, LA3, and CA3, c keeps sending phase 2a mes-
sages for round i with some single value v to the acceptors. By LA1, each
acceptor in Q receives those messages and, by CA4 and step 2, it sends
a round i phase 2b message with value v to l if it has not already done
so. By CA3 and step 3, the acceptors in Q keep sending those phase 2b
messages to l , so LA1 and CA4 imply l eventually learns v .

2.4 Implementation Considerations

We expect process failure and message loss to be rare events. (If physical
messages are often lost, then an acknowledgement and retransmission pro-
tocol will be used to make logical message loss rare.) Almost always, no
failure or message loss occurs between when a value is proposed and when
it is chosen. I therefore consider implementation costs only in this normal
case. However, it might be common for one or more agents to have already
failed when a proposal is issued.

2.4.1 Reducing the Number of Messages

The algorithm described here never terminates and can keep sending un-
necessary messages. I now describe some simple implementation techniques
that can make it quite efficient.

First of all, there is no need to continue executing the algorithm once
a value has been chosen. Any process that learns the chosen value can
stop executing the algorithm and simply broadcast that value to all other
processes.

CA3 requires that agents keep retransmitting messages that may already
have been received. In some cases, the sender can tell that it is not necessary
to keep sending the message. For example, a coordinator that has received a
phase 1b message from an acceptor need no longer send it phase 1a messages
for the same round—even though it has not yet sent a phase 2a message. In
real systems, acknowledgements are often sent to tell the sender that a mes-
sage has been received. However, if the receiver does not record the receipt
of the message in stable storage, then the acknowledgement can serve only
as a hint that the sender need not resend for a while. In practice, the appro-
priate use of acknowledgements and timeouts will avoid most retransmission
if no message loss has occurred.

There are several ways of reducing the number of messages used by the
algorithm. (These save messages in the normal case, but not necessarily in
exceptional cases.)

13

• A coordinator can send a phase 1a or 2a message only to a majority of
acceptors that it believes are nonfaulty. It can later send the message
to other acceptors if one of the original acceptors does not respond.

• A proposer can send its proposal only to the leader rather than to
all coordinators. However, this requires that the result of the leader-
selection algorithm be broadcast to the proposers, which might be
expensive. So, it might be better to let the proposer send its proposal
to all coordinators. (In that case, only the coordinators themselves
need to know who the leader is.)

• Instead of each acceptor sending phase 2b messages to each learner,
acceptors can send their phase 2b messages to the leader and the leader
can inform the learners when a value has been chosen. However, this
adds an extra message delay.

Finally, observe that phase 1 is unnecessary for round 1, because a phase 1b
message sent by an acceptor a in that round can report only vrnd [a] = 0.
(Acceptor a will not send the phase 1b message for round 1 if rnd [a] ≥ 1.)
The coordinator of round 1 can begin the round by sending a phase 2a
message with any proposed value.

2.4.2 The Cost of Classic Paxos

The efficiency of a consensus algorithm would not matter if a system were to
execute it only once. In most applications, the system executes a sequence
of instances of the algorithm with the same agents, using the same leader
for each instance [7, Section 3], [9, Section 3].

Key to the efficiency of the Paxos consensus algorithm is the observation
that phase 1 can be performed simultaneously for all instances. When a new
leader c is selected, either initially or because the previous leader failed, c
chooses a round number i for which it is coordinator that it believes is
larger than that of any previously started round. It then sends round i
phase 1a messages for all instances whose outcome it does not already know.
An acceptor responds with phase 1b messages for all those instances. As
explained elsewhere [7, 9, 12], those messages contain only a small amount
of information, and the messages sent by each agent for all those instances
are easily combined into a single physical message. The amortized cost of
phase 1 is therefore negligible, and only the cost of phase 2 matters.

In almost all instances, every acceptor a reports vrnd [a] = 0. The
coordinator then waits for a proposal message and sends its proposed value

14

in its phase 2a message. In the normal case, the Paxos algorithm then works
as follows, when we use the techniques for eliminating messages described
in Section 2.4.1 above.

• The proposer sends a message either to the leader or to all coordina-
tors.

• The leader sends phase 2a messages to a majority set of acceptors.

• The majority set sends phase 2b messages to the learners.

There are three potentially significant costs to executing the Paxos consensus
algorithm. The two obvious ones are the latency, measured in message
delays, and the communication bandwidth, measured in number of messages.
The latency is three message delays. The number of messages depends
on implementation details such as the number of coordinators to which a
proposal is sent. Let N be the number of acceptors, and suppose phase
1a and 2a messages are sent only to a majority set. With multicast, so a
single message can have multiple recipients, a total of bN /2c+3 messages are
required. Suppose proposals are sent only to the leader, which is an acceptor,
and the acceptors are the learners (a common situation for client/server
systems). With unicast (point-to-point messages), N (bN /2c + 1) messages
are sent.

The less obvious cost is the latency caused by writing information to
stable storage. As observed in Section 2.1, allowing a failed agent to be
restarted requires that its state be recorded in stable storage. For many
systems, writing to stable storage can be much more expensive than sending
a message. Thus, in executing phase 2, the leader must perform a write to
stable storage before sending its phase 2a messages, and acceptors must write
to stable storage before sending their phase 2b messages. Since the latter
writes are concurrent, this yields a latency of two stable-storage writes.

Whether proposers and learners must write to stable storage depends on
the application. A learner can always ask the current leader what value, if
any, has been chosen for a particular instance of the consensus algorithm. If
the leader does not know, perhaps because it was just selected to be leader,
it can start a new round to find out. It will either discover in phase 1 that
no value has been chosen or else will execute phase 2a for a value that might
already have been chosen.

15

3 Making Paxos Fast

As explained in Section 2.4.2 above, the normal-case communication pattern
in the Paxos consensus algorithm is:

proposer → leader → acceptors → learners

In Fast Paxos, the proposer sends its proposal directly to the acceptors,
bypassing the leader. This can save one message delay (and one message). I
now explain how it works. But first, I need to generalize the Paxos algorithm
in a small but important way.

The Paxos algorithm is stated above in terms of majority sets, where
a majority set comprises a majority of the acceptors. A value v is chosen
in round i iff a majority set of acceptors vote to accept v in round i . The
only property required of majority sets is that any two majority sets have
non-empty intersection. The algorithm trivially generalizes by assuming an
arbitrary collection of sets called quorums such that any two quorums have
non-empty intersection, and simply replacing “majority set” by “quorum”
throughout Section 2.

We can further generalize the algorithm by allowing the set of quorums
to depend on the round number. That is, we assume, for each round number
i , a set of sets of acceptors called i -quorums. A value v is chosen in round
i iff all acceptors in some i -quorum vote to accept v in round i . Again, the
only requirement needed to preserve consistency is that any two quorums
have non-empty intersection. This means that for any round numbers i
and j , any i -quorum and any j -quorum have non-empty intersection. The
necessary changes to the algorithm are obvious. For example, in Figure 1,
instead of being a majority set, Q should be an i -quorum. I will not bother
explicitly rewriting the algorithm.

It is not obvious what “majority set” should be replaced with in the
progress property of Section 2.3. This is discussed in Section 3.3 below.

3.1 The Basic Algorithm

I now describe the generalization to Fast Paxos of the basic Paxos algorithm
of Section 2.2. It guarantees only safety. Progress and cost are considered
later.

In Fast Paxos, round numbers are partitioned into fast and classic round
numbers. A round is said to be either fast or classic, depending on its
number. Rounds proceed in two phases, just as before, except with two
differences:

16

• The rule by which the coordinator picks a value in phase 2a is modified
as explained below.

• In a fast round i , if the coordinator can pick any proposed value in
phase 2a, then instead of picking a single value, it may instead send
a special phase 2a message called an any message to the acceptors.
When an acceptor receives a phase 2a any message, it may treat any
proposer’s message proposing a value as if it were an ordinary round i
phase 2a message with that value. (However, it may execute its round
i phase 2b action only once, for a single value.)

Recall that, in the normal case, all phase 1b messages received by the co-
ordinator c indicate that no acceptors have voted in that round, so c may
pick any proposed value in phase 2a. Therefore, the normal case for a fast
round is for c to send a phase 2a any message. This is normally done when
c is selected to be leader, before any values are proposed for that instance of
the algorithm. An acceptor then waits for a proposal message from a pro-
poser, and it treats the first one it receives as if it were an ordinary phase 2a
message from c.

A classic round works the same as in classic Paxos. The coordinator
picks the value that the acceptors can vote for, so different acceptors cannot
vote to accept different values in the same round. This is not the case in a
fast round. If the coordinator sends a phase 2a any message in a fast round,
each acceptor independently decides what proposal message to take as a
phase 2a message. Different acceptors can therefore vote to accept different
values in a fast round.

The coordinator’s rule for picking a value in phase 2a no longer guar-
antees consistency, even for a classic round. In fact, that rule no longer
works at all. The rule’s statement in Figure 1 asserts that, if k 6= 0, then V
contains a single element. This is no longer true if k is a fast round number.
The rule for picking a value v in phase 2a must be revised.

To discover how to revise the rule, we must review its derivation in
Section 2.2.2. We want to maintain property CP, which means that CP(v , i)
must hold for the value v picked in round i . Observations 1–3 remain valid,
with majority set replaced by j -quorum.

The reasoning is the same as before for case K1, in which k = 0. In this
case, CP(v , i) holds for all values v . The coordinator therefore can send a
phase 2a message with any proposed value, or a phase 2a any message for
a fast round.

We now consider case K2, k > 0. Let V and Q be defined as in Figure 1.
We must find a value v in V that satisfies CP(v , i). This means showing

17

that no value other than v has been or might yet be chosen in round j , for
all j < i . In the reasoning for classic Paxos in Section 2.2.2, we consider
the three possible cases k < j < i , j = k , and j < k . We used the fact that
V contains at most one value only in the j = k case . Therefore, the same
reasoning as before for these cases shows:

• k < j < i . No value has been or might yet be chosen in round j .

• j = k . If V contains the single value v , then no value other than v
has been or might yet be chosen in round j .

• j < k . For any v in V , no value other than v has been or might yet
be chosen in round j .

This takes care of everything, except the case in which j = k and V contains
more than one value—a cast that is possible only if k is a fast round number.
In this case, no value has been or might be chosen in any round numbered
less than i except possibly in round k . (For j < k , this follows because if
no value other than v can be chosen in round j for two different values v ,
then no value can be chosen in round j .) To handle the case of j = k and
V having more than one value, we must reason more carefully.

By Observation 1, a value v might have been or might yet be chosen
in round k only if there is a k -quorum R such that every acceptor a in R
has rnd [a] ≤ k or has voted for v in round k . Since every acceptor a in Q
has rnd [a] ≥ i > k (because a has sent a round i phase 1b message), this
implies:

Observation 4. With Q , vr , vv , and k as in Figure 1, a value v has
been or might yet be chosen in round k only if there exists a k -quorum
R such that vr(a) = k and vv(a) = v for every acceptor a in R ∩Q .

Define O4(v) to be true iff there exists a k -quorum R such that vr(a) = k
and vv(a) = v for all acceptors a in R∩Q . Observation 4 asserts that v has
been or might be chosen in round k only if O4(v) is true. There are three
cases to consider:

1. There is no v in V satisfying O4(v). In this case, Observation 4 implies
that no value has been or might yet be chosen in round k . Hence, the
coordinator can pick any value v ∈ V in phase 2a.

2. There is a single v in V satisfying O4(v). In this case, Observation 4
implies that v is the only value that has been or might yet be chosen
in round k . Hence, the coordinator can pick v in phase 2a.

18

3. There is more than one v in V satisfying O4(v). In this case we are
stuck.

The solution to the dilemma of case 3 is to make that case impossible. Case 3
asserts that O4(v) and O4(w) are true for distinct values v and w . This
implies that there are k -quorums Rv and Rw such that vv(a) = v for all a in
Rv ∩Q and vv(a) = w for all a in Rw ∩Q . This is impossible if Rv ∩Rw ∩Q
is nonempty. We already require that any two quorums have non-empty
intersection. We make case 3 impossible by strengthening this to:

Quorum Requirement For any round numbers i and j :

(a) Any i -quorum and any j -quorum have non-empty intersection.

(b) If j is a fast round number, then any i -quorum and any two j -
quorums have non-empty intersection.

Section 3.3 below discusses how this requirement is satisfied.
This completes the derivation of the rule for choosing the value that

the coordinator sends in its phase 2a messages for round i . The derivation
shows that, with this rule, Fast Paxos satisfies the consistency requirement
for consensus. The rule is summarized in Figure 2.

If i is a fast round number, then in the first then case or the final
else case of Figure 2, the coordinator could send a phase 2a any message.
However, it is better for it to send a proposed value if it knows one, since
that avoids the possibility of collision discussed below. In the final else
case, the coordinator knows that every value in V has been proposed, so it
should send a proposed value.

3.2 Collision Recovery

In classic Paxos, a round i succeeds in choosing a value if an i -quorum of
acceptors receive that round’s phase 2a message before receiving a message
for a higher-numbered round. This is not true for Fast Paxos if i is a fast
round in which the coordinator sends a phase 2a any message. In that case,
different acceptors can vote to accept different values in that round, resulting
in no value being chosen. In the normal case, an acceptor first receives the
phase 2a any message and then votes to accept the first proposed value it
receives. The round can fail if two or more different proposers send proposals
at about the same time, and those proposals are received by the acceptors
in different orders. I now consider what the algorithm does to recover from
such a collision of competing proposals.

19

let Q be any i -quorum of acceptors that have sent round i phase 1b
messages.

vr(a) and vv(a) be the values of vrnd [a] and vval [a], respectively,
reported by acceptor a’s phase 1b message, for a in Q .

k be the largest value of vr(a) for all a in Q .

V be the set of values vv(a) for all a in Q with vr(a) = k .

O4(v) be true iff there is a k -quorum R such that vr(a) = k and
vv(a) = v for all a in R ∩Q .

if k = 0 then let v be any proposed value.
else if V contains a single element

then let v equal that element.
else if there is some w in V satisfying O4(w)

then let v equal that w (which is unique)
else let v be any proposed value

Figure 2: The coordinator’s rule for picking a v that it can send in its
phase 2a message for round i.

The obvious way to recover from a collision is for c to begin a new
round, sending phase 1a messages to all acceptors, if it learns that round i
may not have chosen a value. Suppose the coordinator c of round i is also
coordinator of round i + 1, and that round i + 1 is the new one it starts.
The phase 1b message that an acceptor a sends in response to c’s round
i + 1 phase 1a message does two things: it reports the current values of
vrnd [a] and vval [a], and it transmits a’s promise not to cast any further
vote in any round numbered less than i + 1. (This promise is implicit in
a’s setting rnd [a] to i + 1.) Suppose a voted in round i . In that case, a’s
phase 1b message reports that vrnd [a] = i and that vval [a] equals the value
a sent in its round i phase 2b message. Moreover, that phase 2b message
also implies that a can cast no further vote in any round numbered less
than i +1. In other words, a’s round i phase 2b message carries exactly the
same information as its round i + 1 phase 1b message. If coordinator c has
received the phase 2b message, it has no need of the phase 1b message. This
observation leads to the following two methods for recovery from collision.

The first method is coordinated recovery. Suppose i is a fast round
number and c is coordinator of rounds i and i +1. In coordinated recovery,

20

acceptors send their round i phase 2b messages to the coordinator c (as well
as to the learners). If c receives those messages from an (i + 1)-quorum
of acceptors and sees that a collision may have occurred, then it treats
those phase 2b messages as if they were the corresponding round i + 1
phase 1b messages and executes phase 2a of round i + 1, using the rule
of Figure 2 to choose the value v in its phase 2a messages. (Note that
an acceptor can perform its phase 2b action even if it never received a
phase 1a message for the round.) Since V is non-empty in this case, c does
not send a phase 2a any message. Hence, round i + 1 will succeed if the
acceptors in a nonfaulty (i + 1)-quorum receive those phase 2a messages
before receiving any message from a higher-numbered round. Coordinated
recovery is forbidden by modification CA2 (Section 2.3.2), which was added
to guarantee progress. CA2 is amended below to correct this problem.

The second method is uncoordinated recovery. Suppose i and i + 1
are both fast round numbers. In uncoordinated recovery, acceptors send
their round i phase 2b messages to all other acceptors. Each acceptor uses
the same procedure as in coordinated recovery to pick a value v that the
coordinator could send in a round i + 1 phase 2a message. It then executes
phase 2b for round i + 1 as if it had received such a phase 2a message.
Because of nondeterminism in the rule for picking v , different acceptors
could vote to accept different values in round i + 1, preventing the round
from succeeding. However, since i +1 is a fast round number, consistency is
preserved and a higher-numbered round can still choose a value. Section 3.4
discusses ways of trying to get all the acceptors to pick the same v .

Coordinated and uncoordinated recovery add new allowed actions to the
algorithm. These actions maintain safety because they are equivalent to
actions allowed by the original algorithm. A coordinator that learns of a
collision in round i can still start a complete new round with a number
greater than i + 1. (Like coordinated recovery, this will be allowed by the
amended version of CA2.)

3.3 Progress

To specify the progress property that Fast Paxos must solve, we have to find
the appropriate replacement for majority set in the classic Paxos progress
property of Section 2.3. The obvious replacement is i -quorum, but for
what i? Answering that question requires considering how quorums are
selected.

The Quorum Requirement of Section 3.1 states requirements for i -quo-
rums that differ depending on whether i is a classic or fast round number.

21

There seems to be no other reason why one would want the set of i -quorums
to depend on i . I therefore assume two types of quorums—classic and fast.
An i -quorum is a classic or fast quorum depending on whether i is a classic
or fast round number. The Quorum Requirement then asserts that (a) any
two quorums have non-empty intersection and (b) any two fast quorums and
any classic or fast quorum have a non-empty intersection.

To obtain the progress property for Fast Paxos, we are led to replace
majority set in the classic Paxos progress property with either classic quo-
rum or fast quorum. But which should we choose? Since the requirements
for fast quorums are stronger than for classic quorums, fast quorums will be
at least as large as classic ones. So, requiring only a classic quorum to be
nonfaulty for progress gives a stronger progress property than requiring a
fast quorum to be nonfaulty. I will now enhance the Fast Paxos algorithm
to make it satisfy the stronger property, obtained by substituting classic
quorum for majority set in the classic Paxos progress property.

If i is a classic round number, then round i works exactly the same in
Fast Paxos as in Classic Paxos. If we ensure that a leader eventually starts a
round with a large enough classic round number, then the same argument as
in Section 2.3.3 above shows that Fast Paxos satisfies its progress property.
(Since uncoordinated recovery allows acceptors executing round i to start a
new round i + 1, the proof of the progress property requires the additional
observation that this can happen only if i is a fast round number.) To en-
sure that the leader can start a classic round with a large enough number,
we make the assumption that each coordinator is the coordinator for infi-
nitely many classic round numbers. (This is a condition on the pre-assigned
mapping from rounds to coordinators.) We also modify CA2 to:

CA2′. A coordinator c may perform an action only if it believes itself
to be the current leader. It may begin a new round i only if
(a) crnd [c] = 0, (b) crnd [c] equals a fast round number and i is
a classic round number, or (c) it has learned that a round j has
been started, for some j with crnd [c] < j < i .

Case (b) allows coordinated recovery from a collision in a fast round i if
i + 1 is a classic round number, as well as starting a completely new classic
round. Since the leader never sends a phase 2a any message in coordinated
recovery, and classic quorums are at least as small as fast ones, there is no
reason to perform coordinated recovery with i + 1 a fast round. CA4 must
be interpreted to mean that if coordinator c believes itself to be the leader
and crnd [c] remains a fast round number, then c must eventually begin a

22

new classic round. As I have observed, this ensures that Fast Paxos satisfies
its liveness property.

3.4 Implementation Considerations

3.4.1 Choosing Quorums

In most applications, whether a set of acceptors forms a quorum depends
only on its cardinality. Let N be the number of acceptors, and let us choose
F and E such that any set of at least N − F acceptors is a classic quorum
and any set of at least N −E acceptors is a fast quorum. This means that a
classic round can succeed if up to F acceptors have failed, and a fast round
can succeed if up to E acceptors have failed. We would like E and F to be
as large as possible, though increasing one may require decreasing the other.

Recall that the Quorum Requirement asserts that (a) any two quorums
have non-empty intersection and (b) any two fast quorums and any classic
or fast quorum have a non-empty intersection. Since the requirements for
fast quorums are more stringent than for classic quorums, we can always
assume E ≤ F . (If F < E , we could replace F by E and still satisfy the
requirements.) It is not hard to show that E ≤ F implies that (a) and (b)
are equivalent to:

(a) N > 2F
(b) N > 2E + F

For a fixed N , the two natural ways to choose E and F are to maximize one
or the other. Maximizing E under the constraints (a) and (b) yields E =
F = dN /3e−1; maximizing F under those constraints yields F = dN /2e−1
and E = bN /4c.

With E < F , the leader can decide whether to employ a fast or slow
round number based on the number of acceptors that are nonfaulty. If there
are at least N − E nonfaulty acceptors, it can use a fast round. If more
than E acceptors have failed, then the leader can switch to classic Paxos by
beginning a new round with a classic round number, executing phase 1 for
all instances. (See Section 2.4.2.)

3.4.2 Avoiding Collisions in Uncoordinated Recovery

In uncoordinated recovery, an acceptor picks a value to vote for in round
i + 1 based on the round i phase 2b messages it receives. It uses the rule
of Figure 2, treating those phase 2b messages as round i + 1 phase 1b

23

messages. The nondeterminism in that rule could lead different acceptors
to pick different values, which could prevent round i + 1 from choosing a
value. I now show how to prevent that possibility.

For a fixed (i + 1)-quorum Q , the nondeterminism is easily removed by
using a fixed procedure for picking a value from V in the final else clause
of Figure 2. However, different acceptors could use different (i +1)-quorums
Q if they do not all receive the same set of round i phase 2b messages.
This can be prevented by having the round’s coordinator indicate in its
round i phase 2a any message what (i + 1)-quorum Q should be used for
uncoordinated recovery in case of collision. (It can select as Q any quorum it
believes to be nonfaulty.) The coordinator could also indicate Q implicitly,
by first sending its phase 2a message only to a minimal fast quorum Q of
nonfaulty acceptors, as described in Section 2.4. In the normal case when
none of the acceptors in Q fail, then the set of round i phase 2b messages
received by the acceptors in Q will be exactly the ones sent by the acceptors
in Q , so all the acceptors in Q will use Q as the (i + 1)-quorum when
picking a value for their round i + 1 phase 2b messages. Round i + 1 will
then succeed.

3.4.3 The Cost of Fast Paxos

As explained in Section 2.4.2, a newly selected leader selects a new round
number and executes phase 1 concurrently for multiple instances of the
consensus algorithm. If E < F , so fast quorums are larger than classic
quorums, the leader will probably choose a fast round number iff it believes
that a fast quorum of acceptors is nonfaulty. If E = F , in most applications
it will always select a fast round number. If the leader chooses a classic round
number, then everything works as in classic Paxos. The only difference in
cost is that a quorum may consist of more than a majority of acceptors, so
more messages are sent. Suppose now that it chooses a fast round number.

For almost all instances, the leader finds in phase 1 that it can use any
proposed value. It therefore sends a phase 2a any message to all acceptors
in some quorum. Since this message is sent for almost all instances, only
a single physical message is needed for all those instances and the amor-
tized cost is negligible. The significant cost of Fast Paxos begins with the
proposer’s proposal message.

In classic Paxos, proposers can be informed of who the leader is, and
they can send their proposals to just the leader. However, it might be
easier to have them send proposals to all coordinators rather than informing
them who the current leader is. Similarly, in Fast Paxos, proposers can

24

learn that fast rounds are being executed and that the leader has chosen
some specific nonfaulty quorum of acceptors to whom they should send their
proposals. However, it might be easier to have them send their proposals to
all coordinators and acceptors.

In the absence of collision, the round proceeds exactly as in classic Paxos,
except with one fewer message delay and with somewhat more messages,
since a fast quorum generally contains more than a majority of acceptors.
Moreover, the use of coordinated or uncoordinated recovery from collision
requires that phase 2b messages be sent to the leader (coordinated recovery)
or to a fast quorum of acceptors (uncoordinated recovery). This may require
additional unicast (but not multicast) messages, depending on whether the
leader or the acceptors are also learners. For comparison with classic Paxos,
let us again assume that the leader is an acceptor, the acceptors are the
learners, and phase 2a messages are sent only to a quorum. Let us also
assume that E = F and proposals are sent only to a quorum. Under these
assumptions, b2N /3c+ 2 multicast or N (b2N /3c+ 1) unicast messages are
required.

If there is a collision in a fast round, then the algorithm incurs the addi-
tional cost of recovery. That cost depends on how recovery is performed—
with a completely new round, with coordinated recovery, or with uncoor-
dinated recovery. The coordinator will decide in advance which type of
recovery should be used. Its decision can be either implied by the round
number or announced in the phase 2a any messages.

Starting a new round incurs the cost of phases 1 and 2 of the new round.
The cost of coordinated recovery from a collision in round i is the cost of
phase 2 of round i +1, which includes the latency of two message delays and
of two writes to stable storage. With the assumptions above, this means an
additional b2N /3c+2 multicast or N (b2N /3c+1) unicast messages. Unco-
ordinated recovery adds only the cost of phase 2b of round i + 1, including
the latency of one message delay and of one write to stable storage. With the
same assumptions, this gives b2N /3c+ 1 multicast or (N − 1)(b2N /3c+ 1)
unicast messages. This makes uncoordinated recovery seem better than co-
ordinated recover, which in turn seems better than starting a complete new
round. However, these numbers assume that acceptors are learners. If not,
uncoordinated recovery may add more phase 2b messages to round i than
does coordinated recovery (even in the absence of collision); and recovery
by starting a complete new round adds no extra messages to round i .

The best method of recovering from a collision depends on the cost of
sending those extra round i messages and on how often collisions occur.
With multicast, there is probably no cost to those extra messages, in which

25

case uncoordinated recovery is best. If collisions are very rare, then starting
a new round might be best. If collisions are too frequent, then classic Paxos
might be better than Fast Paxos.

Remember that a collision does not occur just because two proposals are
sent at the same time; it requires those proposals to be received in different
order by different acceptors. How often that happens depends on how often
proposals are generated and on the nature of the communication medium.
For example, if all the acceptors are on the same Ethernet, then it is very
unlikely for messages to be received in different order by different acceptors,
so collisions will be extremely rare.

4 Conclusion

The consensus problem is best expressed in terms of proposers that propose
values, acceptors that choose a value, and learners that learn the chosen
value. Traditional asynchronous consensus algorithms require three message
delays between proposal and learning. In normal operation, Fast Paxos
requires only two message delays in the absence of collision: a proposer
sends its proposal to acceptors and the acceptors send phase 2b messages
to the learners. If a collision does occur, uncoordinated recovery normally
adds only one message delay: the acceptors send another round of phase 2b
messages to the learners. These are the minimum message delays required
by a general consensus algorithm—that is, one that works for arbitrary sets
of proposers, acceptors, and learners [11].

The number of nonfaulty acceptors required to ensure progress is deter-
mined by the Quorum Requirement. The Fast-Accepting Lemma in Section
2.3 of [11] shows that this requirement must be satisfied by any general fast
consensus algorithm. Quorums can be chosen so progress with fast learning
is ensured if more than 2/3 of the acceptors are nonfaulty. Alternatively,
they can be chosen so progress is ensured if a majority of the acceptors
are nonfaulty and fast learning occurs if at least 3/4 of the acceptors are
nonfaulty.

The algorithm of Brasileiro et al. [1] can be converted to a fast consensus
algorithm by having each of their processes use as its private value the first
proposed value it receives. Their N processes are then the acceptors and
learners. (It is easy to add other learners.) The algorithm starts with what
is essentially a fast round 1 of a version of Fast Paxos in which fast and
classic quorums both contain N − F acceptors, where N > 3F . If that
round does not succeed, the algorithm switches to an ordinary consensus

26

algorithm where each process takes as its private value a value that it could
send in a phase 2b message for round 2 with uncoordinated recovery. This
works because Fast Paxos satisfies property CP (Section 2.2.2), so if a value
v has been or might yet be chosen by round 1, then no process can use
any value other than v as its private value. The R-Consensus Algorithm of
Pedone and Schiper [15] is similar to a version of Fast Paxos in which all
rounds are fast.

The One-Two Consensus Algorithm of Zielinski [16] concurrently exe-
cutes a fast and classic protocol for each round. If a collision prevents the
fast protocol from choosing a value in two message delays, then the classic
protocol can choose the value in one more message delay. Consistency is
maintained by allowing the fast protocol to choose only a value that is pro-
posed by the leader in the classic protocol. Failure of a single process (the
leader) makes fast learning impossible, so this is formally an E = 0 proto-
col. However, it allows fast learning despite the failure of E > 0 acceptors
different from the leader.

Both classic and Fast Paxos can be generalized to handle Byzantine
(malicious) failures. The Castro-Liskov algorithm [2] is one version of clas-
sic Byzantine Paxos. In the normal case, this algorithm requires one more
message delay than ordinary classic Paxos, for a total of four message delays
between proposal and learning. The extra message delay is needed to pre-
vent a malicious coordinator from sending phase 2a messages with different
values. Since Fast Paxos allows phase 2a messages with different values in
fast rounds, it can be generalized to a faster Byzantine Paxos algorithm
that eliminates the extra message delay. The Fast Byzantine Consensus
algorithm developed independently by Martin and Alvisi [13] is one ver-
sion of the resulting algorithm. Fast Paxos can also be generalized to a
Fast Byzantine Paxos algorithm that requires only two message delays be-
tween proposal and learning in the absence of collisions. (However, a single
malicious proposer can by itself create a collision.) Descriptions of these
generalizations of classic and Fast Paxos will appear elsewhere.

Acknowledgment

I wish to thank Fernando Pedone for his comments on an earlier version.

References

[1] Francisco Brasileiro, Fab́ıola Greve, Achour Mostefaoui, and Michel
Raynal. Consensus in one communication step. In V. Malyshkin, editor,

27

Parallel Computing Technologies (6th International Conference, PaCT
2001), volume 2127 of Lecture Notes in Computer Science, pages 42–50.
Springer-Verlag, 2001.

[2] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.
In Proceedings of the Third Symposium on Operating Systems Design
and Implementation, pages 173–186. ACM, 1999.

[3] Bernadette Charron-Bost and André Schiper. Uniform consensus
is harder than consensus (extended abstract). Technical Report
DSC/2000/028, École Polytechnique Fédérale de Lausanne, Switzer-
land, May 2000.

[4] Roberto De Prisco, Butler Lampson, and Nancy Lynch. Revisiting the
paxos algorithm. Theoretical Computer Science, 243:35–91, 2000.

[5] Michael J. Fischer, Nancy Lynch, and Michael S. Paterson. Impossi-
bility of distributed consensus with one faulty process. Journal of the
ACM, 32(2):374–382, April 1985.

[6] Leslie Lamport. Introduction to TLA. SRC Technical Note 1994-
001, Digital Systems Research Center, December 1994. Currently
available from http://www.hpl.hp.com/techreports/Compaq-DEC/
SRC-TN-1994-001.html.

[7] Leslie Lamport. The part-time parliament. ACM Transactions on Com-
puter Systems, 16(2):133–169, May 1998.

[8] Leslie Lamport. A summary of TLA+. Currently available from
http://research.microsoft.com/users/lamport/tla/tla.html or
by searching the Web for the 21-letter string obtained by removing
the - characters from uid-lamport-tla-homepage, 2000.

[9] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed
Computing Column), 32(4):18–25, December 2001.

[10] Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003.
Also available on the Web via a link at http://lamport.org.

[11] Leslie Lamport. Lower bounds for asynchronous consensus. Tech-
nical Report MSR-TR-2004-71, Microsoft Research, July 2004.
Currently available from http://research.microsoft.com/users/
lamport/pubs/pubs.html, or by searching the Web for the 23-letter

28

string obtained by removing the - characters from all-lamports-pubs-
onthe-web.

[12] Butler W. Lampson. How to build a highly available system using
consensus. In Ozalp Babaoglu and Keith Marzullo, editors, Distributed
Algorithms, volume 1151 of Lecture Notes in Computer Science, pages
1–17, Berlin, 1996. Springer-Verlag.

[13] Jean-Philippe Martin and Lorenzo Alvisi. Fast byzantine consensus. In
Proceedings of the International Conference on Dependable Systems and
Networks (DSN 2005), Yokohama, June 2005. IEEE Computer Society.
To appear.

[14] Fernando Pedone and André Schiper. Handling message semantics with
generic broadcast. Distributed Computing, 15(2):97–107, 2002.

[15] Fernando Pedone, André Schiper, Péter Urbán, and David Cavin. Solv-
ing agreement problems with weak ordering oracles. In Proceedings of
the 4th European Dependable Computing Conference (EDCC-4), vol-
ume 2485 of Lecture Notes in Computer Science, pages 44–61. Springer-
Verlag, 2002.

[16] Piotr Zielinski. Optimistic generic broadcast. In Pierre Fraigniaud,
editor, DISC ’05: Proceedings of the 19th International Conference on
Distributed Computing, volume 3724 of Lecture Notes in Computer Sci-
ence, pages 369–383. Springer-Verlag, 2005.

Appendix: The Formal Specification

I now present a formal TLA+ [10] specification of Fast Paxos. What such
a specification means is explained briefly in [6]. The TLA+ notation is
summarized in the first four pages of [8].

For simplicity, the specification does not describe proposers and learners.
Instead, it contains a variable proposed whose value represents the set of
proposed values and a variable learned whose value represents the set of
learned values. An action that in an implementation would be enabled by
the receipt of a message proposing a value v is instead enabled by v being
an element of proposed . A value is added to the set learned when sentMsg
contains a set of messages that would enable a learner to learn that value.

The leader-selection algorithm is represented by a variable amLeader ,
where amLeader [c] is a Boolean that is true iff coordinator c believes itself
to be the current leader.

29

The specification contains a variable goodSet whose value is a set of
acceptors and coordinators that is assumed to be a good set. (The speci-
fication does not rule out the possibility that there are other good sets as
well.) Condition CA4, which requires nonfaulty agents to perform their ac-
tions, is formalized by weak fairness requirements on actions of agents in
goodSet . The specification’s requirement is actually weaker than CA4, since
it applies only to nonfaulty agents that are in goodSet .

The specification describes message passing in terms of a variable
sentMsg that represents the set of all messages present in the communi-
cation medium. Sending a message is represented by adding it to sentMsg ,
losing the message is represented by removing it from sentMsg . An operation
that in an implementation would occur upon receiving some set of messages
is represented by an action that is enabled when that set of messages is in
sentMsg . The action does not remove those messages from sentMsg , so the
specification allows the same message to be “received” multiple times.

The algorithm requires an agent to keep retransmitting its most recent
message. We let the set sentMsg include that message. We can think of the
buffer in which the agent keeps that message as part of the communication
medium represented by sentMsg , so the message can be lost (removed from
sentMsg) only if the agent fails. The specification therefore does not allow
the last message sent by an agent in goodSet to be lost. Since the presence of
a message in sentMsg allows the message to be “received”, there is no need
for an explicit action to keep retransmitting it. (However, the specification
does include explicit retransmission actions in case an agent has failed and
been repaired after its last message has been lost.)

Because messages are not removed from sentMsg when they are received,
the specification can be simplified by allowing a single element of sentMsg
to represent messages sent to multiple agents. A message therefore does not
specify its recipient. A coordinator sends a single phase 1a or 2a message
(by adding it to the set sentMsg) that can be received by any acceptors.
Moreover, a round j message sent by an acceptor to the coordinator of
that round can be received by other coordinators as well. The specification
is further simplified by eliminating the messages that CA1 (Section 2.3.2)
requires an acceptor a to send when it receives a round i message when
i < rnd [a]. The message sent by a for round rnd [a] to the coordinator of
that round serves to notify the coordinator of round i that round rnd [a] has
been started.

30

module FastPaxos
The module imports two standard modules. Module Naturals defines the set Nat of
naturals and the ordinary arithmetic operators; module FiniteSets defines IsFiniteSet(S)
to be true iff S is a finite set and defines Cardinality(S) to be the number of elements in
S , if S is finite.

extends Naturals, FiniteSets

Constants

Max (S) is defined to be the maximum of a nonempty finite set S of numbers.

Max (S) ∆= choose i ∈ S : ∀ j ∈ S : j ≤ i

The next statement declares the specification’s constant parameters, which have the fol-
lowing meanings:

Val the set of values that may be proposed.
Acceptor the set of acceptors.
FastNum the set of fast round numbers.
Quorum(i) the set of i-quorums.
Coord the set of coordinators.
Coord(i) the coordinator of round i .

constants Val , Acceptor , FastNum, Quorum(), Coord , CoordOf ()

RNum is defined to be the set of positive integers, which is the set of round numbers.

RNum ∆= Nat \ {0}
The following statement asserts the assumption that FastNum is a set of round numbers.

assume FastNum ⊆ RNum

ClassicNum is defined to be the set of classic round numbers.

ClassicNum ∆= RNum \FastNum

The following assumption asserts that the set of acceptors is finite. It is needed to ensure
progress.

assume IsFiniteSet(Acceptor)

The following asserts the assumptions that Quorum(i) is a set of sets of acceptors, for
every round number i , and that the Quorum Requirement (Section 3.1, page 19) holds.

assume ∀ i ∈ RNum :
∧Quorum(i) ⊆ subset Acceptor
∧ ∀ j ∈ RNum :

∧ ∀Q ∈ Quorum(i), R ∈ Quorum(j) : Q ∩ R 6= {}
∧ (j ∈ FastNum) ⇒

∀Q ∈ Quorum(i) : ∀R1, R2 ∈ Quorum(j) :
Q ∩ R1 ∩ R2 6= {}

31

The following asserts the assumptions that CoordOf (i) is a coordinator, for every round
number i , and that every coordinator is the coordinator of infinitely many classic rounds.

assume ∧ ∀ i ∈ RNum : CoordOf (i) ∈ Coord
∧ ∀ c ∈ Coord , i ∈ Nat :

∃ j ∈ ClassicNum : (j > i) ∧ (c = CoordOf (j))

any and none are defined to be arbitrary, distinct values that are not elements of Val .

any ∆= choose v : v /∈ Val
none ∆= choose n : n /∈ Val ∪ {any}
Message is defined to be the set of all possible messages. A message is a record having a
type field indicating what phase message it is, a rnd field indicating the round number.
What other fields, if any, a message has depends on its type.

Message ∆=
[type : {“phase1a”}, rnd : RNum]

∪ [type : {“phase1b”}, rnd : RNum, vrnd : RNum ∪ {0},
vval : Val ∪ {any}, acc : Acceptor]

∪ [type : {“phase2a”}, rnd : RNum, val : Val ∪ {any}]
∪ [type : {“phase2b”}, rnd : RNum, val : Val , acc : Acceptor]

Variables and State Predicates

The following statement declares the specification’s variables, which have all been de-
scribed above—either in Section 2.2.1 on page 4 or in this appendix.

variables rnd , vrnd , vval , crnd , cval , amLeader , sentMsg , proposed ,
learned , goodSet

Defining the following tuples of variables makes it more convenient to state which variables
are left unchanged by the actions.

aVars ∆= 〈rnd , vrnd , vval〉 Acceptor variables.

cVars ∆= 〈crnd , cval〉 Coordinator variables.

oVars ∆= 〈amLeader , proposed , learned , goodSet〉 Most other variables.

vars ∆= 〈aVars, cVars, oVars, sentMsg〉 All variables.

TypeOK is the type-correctness invariant, asserting that the value of each variable is an
element of the proper set (its “type”). Type correctness of the specification means that
TypeOK is an invariant—that is, it is true in every state of every behavior allowed by the
specification.

TypeOK ∆=
∧ rnd ∈ [Acceptor → Nat]
∧ vrnd ∈ [Acceptor → Nat]
∧ vval ∈ [Acceptor → Val ∪ {any}]

32

∧ crnd ∈ [Coord → Nat]
∧ cval ∈ [Coord → Val ∪ {any , none}]
∧ amLeader ∈ [Coord → boolean]
∧ sentMsg ∈ subset Message
∧ proposed ∈ subset Val
∧ learned ∈ subset Val
∧ goodSet ⊆ Acceptor ∪ Coord

Init is the initial predicate that describes the initial values of all the variables.

Init ∆=
∧ rnd = [a ∈ Acceptor 7→ 0]
∧ vrnd = [a ∈ Acceptor 7→ 0]
∧ vval = [a ∈ Acceptor 7→ any]
∧ crnd = [c ∈ Coord 7→ 0]
∧ cval = [c ∈ Coord 7→ none]
∧ amLeader ∈ [Coord → boolean]
∧ sentMsg = {}
∧ proposed = {}
∧ learned = {}
∧ goodSet ∈ subset (Acceptor ∪ Coord)

Action Definitions

Send(m) describes the state change that represents the sending of message m. It is used
as a conjunct in defining the algorithm actions.

Send(m) ∆= sentMsg ′ = sentMsg ∪ {m}

Coordinator Actions

Action Phase1a(c, i) specifies the execution of phase 1a of round i by coordinator c,
described in Section 2.2.1 (on page 5) and refined by CA2′ (Section 3.3, page 22).

Phase1a(c, i) ∆=
∧ amLeader [c]
∧ c = CoordOf (i)
∧ crnd [c] < i
∧ ∨ crnd [c] = 0
∨ ∃m ∈ sentMsg : ∧ crnd [c] < m.rnd

∧m.rnd < i
∨ ∧ crnd [c] ∈ FastNum
∧ i ∈ ClassicNum

33

∧ crnd ′ = [crnd except ![c] = i]
∧ cval ′ = [cval except ![c] = none]
∧ Send([type 7→ “phase1a”, rnd 7→ i])
∧ unchanged 〈aVars, oVars〉

MsgsFrom(Q , i , phase) is defined to be the set of messages in sentMsg of type phase (which
may equal “phase1b” or “phase2b”) sent in round i by the acceptors in the set Q .

MsgsFrom(Q , i , phase) ∆=
{m ∈ sentMsg : (m.type = phase) ∧ (m.acc ∈ Q) ∧ (m.rnd = i)}

If M is the set of round i phase 1b messages sent by the acceptors in a quorum Q , then
IsPickableVal(Q , i ,M , v) is true iff the rule of Figure 2 (page 20) allows the coordinator
to send the value v in a phase 2a message for round i .

IsPickableVal(Q , i , M , v) ∆=
let vr(a) ∆= (choose m ∈ M : m.acc = a).vrnd

vv(a) ∆= (choose m ∈ M : m.acc = a).vval
k ∆= Max ({vr(a) : a ∈ Q})
V ∆= {vv(a) : a ∈ {b ∈ Q : vr(b) = k}}
O4(w) ∆= ∃R ∈ Quorum(k) :

∀ a ∈ R ∩Q : (vr(a) = k) ∧ (vv(a) = w)
in if k = 0 then ∨ v ∈ proposed

∨ ∧ i ∈ FastNum
∧ v = any

else if Cardinality(V) = 1
then v ∈ V
else if ∃w ∈ V : O4(w)

then v = choose w ∈ V : O4(w)
else v ∈ proposed

Action Phase2a(c, v) specifies the execution of phase 2a by coordinator c with value v ,
as described in Section 2.2.1 (on page 5) and Section 2.2.2 (page 6), and refined by CA2′

(Section 3.3, page 22).

Phase2a(c, v) ∆=
let i ∆= crnd [c]
in ∧ i 6= 0

∧ cval [c] = none
∧ amLeader [c]
∧ ∃Q ∈ Quorum(i) :

∧ ∀ a ∈ Q : ∃m ∈ MsgsFrom(Q , i , “phase1b”) : m.acc = a
∧ IsPickableVal(Q , i , MsgsFrom(Q , i , “phase1b”), v)

∧ cval ′ = [cval except ![c] = v]

34

∧ Send([type 7→ “phase2a”, rnd 7→ i , val 7→ v])
∧ unchanged 〈crnd , aVars, oVars〉

P2bToP1b(Q , i) is defined to be the set of round i + 1 phase 1b messages implied by the
round i phase 2b messages sent by the acceptors in the set Q , as explained in Section 3.2.

P2bToP1b(Q , i) ∆=
{[type 7→ “phase1b”, rnd 7→ i + 1, vrnd 7→ i ,

vval 7→ m.val , acc 7→ m.acc] : m ∈ MsgsFrom(Q , i , “phase2b”)}
Action CoordinatedRecovery(c, v) specifies the coordinated recovery described in Sec-
tion 3.2, page 20. With this action, coordinator c attempts to recover from a collision in
round crnd [c] by sending round crnd [c] + 1 phase 2a messages for the value v . Although
CA2′ (Section 3.3, page 22) implies that this action should be performed only if crnd [c]+1
is a classic round, that restriction is not required for correctness and is omitted from the
specification.

CoordinatedRecovery(c, v) ∆=
let i ∆= crnd [c]
in ∧ amLeader [c]

∧ cval [c] = any
∧ c = CoordOf (i + 1)
∧ ∃Q ∈ Quorum(i + 1) :

∧ ∀ a ∈ Q : ∃m ∈ P2bToP1b(Q , i) : m.acc = a
∧ IsPickableVal(Q , i + 1, P2bToP1b(Q , i), v)

∧ cval ′ = [cval except ![c] = v]
∧ crnd ′ = [crnd except ![c] = i + 1]
∧ Send([type 7→ “phase2a”, rnd 7→ i + 1, val 7→ v])
∧ unchanged 〈aVars, oVars〉

coordLastMsg(c) is defined to be the last message that coordinator c sent, if crnd [c] > 0.

coordLastMsg(c) ∆=
if cval [c] = none

then [type 7→ “phase1a”, rnd 7→ crnd [c]]
else [type 7→ “phase2a”, rnd 7→ crnd [c], val 7→ cval [c]]

In action CoordRetransmit(c), coordinator c retransmits the last message it sent. This
action is a stuttering action (meaning it does not change the value of any variable, so it
is a no-op) if that message is still in sentMsg . However, this action is needed because
c might have failed after first sending the message and subsequently have been repaired
after the message was removed from sentMsg .

CoordRetransmit(c) ∆=
∧ amLeader [c]
∧ crnd [c] 6= 0

35

∧ Send(coordLastMsg(c))
∧ unchanged 〈aVars, cVars, oVars〉

CoordNext(c) is the next-state action of coordinator c—that is, the disjunct of the algo-
rithm’s complete next-state action that represents actions of that coordinator.

CoordNext(c) ∆=
∨ ∃ i ∈ RNum : Phase1a(c, i)
∨ ∃ v ∈ Val ∪ {any} : Phase2a(c, v)
∨ ∃ v ∈ Val : CoordinatedRecovery(c, v)
∨ CoordRetransmit(c)

Acceptor Actions

Action Phase1b(i , a) specifies the execution of phase 1b for round i by acceptor a, de-
scribed in Section 2.2.1 on page 5.

Phase1b(i , a) ∆=
∧ rnd [a] < i
∧ [type 7→ “phase1a”, rnd 7→ i] ∈ sentMsg
∧ rnd ′ = [rnd except ![a] = i]
∧ Send([type 7→ “phase1b”, rnd 7→ i , vrnd 7→ vrnd [a], vval 7→ vval [a],

acc 7→ a])
∧ unchanged 〈cVars, oVars, vrnd , vval〉

Action Phase2b(i , a, v) specifies the execution of phase 2b for round i by acceptor a, upon
receipt of either a phase 2a message or a proposal (for a fast round) with value v . It is
described in Section 2.2.1 on page 5 and Section 3.1 on page 17.

Phase2b(i , a, v) ∆=
∧ rnd [a] ≤ i
∧ vrnd [a] < i
∧ ∃m ∈ sentMsg :

∧m.type = “phase2a”
∧m.rnd = i
∧ ∨m.val = v
∨ ∧m.val = any
∧ v ∈ proposed

∧ rnd ′ = [rnd except ![a] = i]
∧ vrnd ′ = [vrnd except ![a] = i]
∧ vval ′ = [vval except ![a] = v]
∧ Send([type 7→ “phase2b”, rnd 7→ i , val 7→ v , acc 7→ a])
∧ unchanged 〈cVars, oVars〉

36

Action UncoordinatedRecovery(i , a, v) specifies uncoordinated recovery, described in Sec-
tion 3.2 on page 21. With this action, acceptor a attempts to recover from a collision in
round i by sending a round i + 1 phase 2b message with value v .

UncoordinatedRecovery(i , a, v) ∆=
∧ i + 1 ∈ FastNum
∧ rnd [a] ≤ i
∧ ∃Q ∈ Quorum(i + 1) :

∧ ∀ b ∈ Q : ∃m ∈ P2bToP1b(Q , i) : m.acc = b
∧ IsPickableVal(Q , i + 1, P2bToP1b(Q , i), v)

∧ rnd ′ = [rnd except ![a] = i + 1]
∧ vrnd ′ = [vrnd except ![a] = i + 1]
∧ vval ′ = [vval except ![a] = v]
∧ Send([type 7→ “phase2b”, rnd 7→ i + 1, val 7→ v , acc 7→ a])
∧ unchanged 〈cVars, oVars〉

accLastMsg(a) is defined to be the last message sent by acceptor a, if rnd [a] > 0.

accLastMsg(a) ∆=
if vrnd [a] < rnd [a]

then [type 7→ “phase1b”, rnd 7→ rnd [a], vrnd 7→ vrnd [a],
vval 7→ vval [a], acc 7→ a]

else [type 7→ “phase2b”, rnd 7→ rnd [a], val 7→ vval [a],
acc 7→ a]

In action AcceptorRetransmit(a), acceptor a retransmits the last message it sent.

AcceptorRetransmit(a) ∆=
∧ rnd [a] 6= 0
∧ Send(accLastMsg(a))
∧ unchanged 〈aVars, cVars, oVars〉

AcceptorNext(a) is the next-state action of acceptor a—that is, the disjunct of the next-
state action that represents actions of that acceptor.

AcceptorNext(a) ∆=
∨ ∃ i ∈ RNum : ∨ Phase1b(i , a)

∨ ∃ v ∈ Val : Phase2b(i , a, v)
∨ ∃ i ∈ FastNum, v ∈ Val : UncoordinatedRecovery(i , a, v)
∨AcceptorRetransmit(a)

Other Actions

Action Propose(v) represents the proposal of a value v by some proposer.

37

Propose(v) ∆=
∧ proposed ′ = proposed ∪ {v}
∧ unchanged 〈aVars, cVars, amLeader , sentMsg , learned , goodSet〉

Action Learn(v) represents the learning of a value v by some learner.

Learn(v) ∆=
∧ ∃ i ∈ RNum :

∃Q ∈ Quorum(i) :
∀ a ∈ Q :
∃m ∈ sentMsg : ∧m.type = “phase2b”

∧m.rnd = i
∧m.val = v
∧m.acc = a

∧ learned ′ = learned ∪ {v}
∧ unchanged

〈aVars, cVars, amLeader , sentMsg , proposed , goodSet〉
Action LeaderSelection allows an arbitrary change to the values of amLeader [c], for all
coordinators c. Since this action may be performed at any time, the specification makes
no assumption about the outcome of leader selection. (However, progress is guaranteed
only under an assumption about the values of amLeader [c].)

LeaderSelection ∆=
∧ amLeader ′ ∈ [Coord → boolean]
∧ unchanged 〈aVars, cVars, sentMsg , proposed , learned , goodSet〉

Action FailOrRepair allows an arbitrary change to the set goodSet . Since this action may
be performed at any time, the specification makes no assumption about what agents are
good. (However, progress is guaranteed only under an assumption about the value of
goodSet .)

FailOrRepair ∆=
∧ goodSet ′ ∈ subset (Coord ∪Acceptor)
∧ unchanged 〈aVars, cVars, amLeader , sentMsg , proposed , learned〉

Action LoseMsg(m) removes message m from sentMsg . It is always enabled unless m is the
last message sent by an acceptor or coordinator in goodSet . Hence, the only assumption
the specification makes about message loss is that the last message sent by an agent in
goodSet is not lost. Because sentMsg includes messages in an agent’s output buffer, this
effectively means that a non-failed process always has the last message it sent in its output
buffer, ready to be retransmitted.

LoseMsg(m) ∆=
∧ ¬ ∨ ∧m.type ∈ {“phase1a”, “phase2a”}

∧m = coordLastMsg(CoordOf (m.rnd))

38

∧ CoordOf (m.rnd) ∈ goodSet
∧ amLeader [CoordOf (m.rnd)]

∨ ∧m.type ∈ {“phase1b”, “phase2b”}
∧m = accLastMsg(m.acc)
∧m.acc ∈ goodSet

∧ sentMsg ′ = sentMsg \ {m}
∧ unchanged 〈aVars, cVars, oVars〉

Action OtherAction is the disjunction of all actions other than ones performed by acceptors
or coordinators, plus the LeaderSelection action (which represents leader-selection actions
performed by the coordinators).

OtherAction ∆=
∨ ∃ v ∈ Val : Propose(v) ∨ Learn(v)
∨ LeaderSelection ∨ FailOrRepair
∨ ∃m ∈ sentMsg : LoseMsg(m)

Next is the algorithm’s complete next-state action.

Next ∆=
∨ ∃ c ∈ Coord : CoordNext(c)
∨ ∃ a ∈ Acceptor : AcceptorNext(a)
∨ OtherAction

Temporal Formulas

Formula Fairness specifies the fairness requirements as the conjunction of weak fairnes
formulas. Intuitively, it states approximately the following:

A coordinator c in goodSet must perform some action if it can, and it must perform
a Phase1a(c, i) action for a classic round i if it can.

An acceptor in goodSet must perform some action if it can.

A value that can be learned must be learned.

It is not obvious that these fairness requirements suffice to imply the progress property,
and that fairness of each individual acceptor and coordinator action is not needed. Part of
the reason is that formula Fairness does not allow an agent in goodSet to do nothing but
Retransmit actions if another of its actions is enabled, since all but the first retransmission
would be a stuttering step, and weak fairness of an action A requires a non-stuttering A
step to occur if it is enabled.

Fairness ∆=
∧ ∀ c ∈ Coord :

∧WFvars((c ∈ goodSet) ∧ CoordNext(c))
∧WFvars((c ∈ goodSet) ∧ (∃ i ∈ ClassicNum : Phase1a(c, i)))

∧ ∀ a ∈ Acceptor : WFvars((a ∈ goodSet) ∧AcceptorNext(a))
∧ ∀ v ∈ Val : WFvars(Learn(v))

39

Formula Spec is the complete specification of the Fast Paxos algorithm.

Spec ∆= Init ∧2[Next]vars ∧ Fairness

Nontriviality asserts that every learned value has been proposed, and Consistency asserts
that at most one value has been learned. The Nontriviality and Consistency conditions
for consensus (Section 2.1) are equivalent to the invariance of these state predicates.

Nontriviality ∆= learned ⊆ proposed
Consistency ∆= Cardinality(learned) ≤ 1

The following theorem asserts that the state predicates TypeOK , Nontriviality , and
Consistency are invariants of specification Spec, which implies that Spec satisfies the
safety properties of a consensus algorithm. It was checked by the TLC model checker on
models that were too small to find a real bug in the algorithm but would have detected
most simple errors in the specification.

theorem Spec ⇒ 2(TypeOK ∧Nontriviality ∧ Consistency)

Because the specification does not explicitly mention proposers and learners, condition
LA(p, l , c,Q) described on page 10 of Section 2.3.1 is replaced by LA(c,Q), which depends
only on c and Q . Instead of asserting that some particular proposer p has proposed a
value, it asserts that some value has been proposed.

LA(c, Q) ∆=
∧ {c} ∪Q ⊆ goodSet
∧ proposed 6= {}
∧ ∀ ll ∈ Coord : amLeader [ll] ≡ (c = ll)

The following theorem asserts that Spec satisfies the progress property of Fast Paxos, de-
scribed in Sections 2.3 and 3.3. The temporal formula 32LA(c,Q) asserts that LA(c,Q)
holds from some time on, and 3(learned 6= {}) asserts that some value is eventually
learned.

theorem ∧ Spec
∧ ∃Q ∈ subset Acceptor :

∧ ∀ i ∈ ClassicNum : Q ∈ Quorum(i)
∧ ∃ c ∈ Coord : 32LA(c, Q)

⇒ 3(learned 6= {})

40

